
Dojo challenge #38 "Xmas wishlist" - writeup

Description
Wrong error management allows users to access sensitive information by providing malicious content to the
application.

Exploitation – PoC
By providing an input string such as the following one, the attacker is able to read arbitrary object attributes and
content of the Python stack, up to the OS environment variables:

wishlist = { price='''test {.__init__.__globals__[os].__dict__}''' }

Risk
The attacker is able to read arbitrary object attributes and content of the Python stack, up to the OS environment
variables, beyond the vulnerable application, so the CVSS Scope is "changed".

However, it does not seem possible for the attacker to execute arbitrary Python methods or system commands, so
the impact seems to be only on confidentiality, not availability nor integrity.

Explanation and remediation
The error lies on the following lines (41-42):

 def makeError(self, message, **kwargs) -> ValueError:
 return ValueError(message.format(self, **kwargs))

On the second line, format(self, **kwargs) looks like a method signature, not like a method call. It does not
really make sense to pass selfas the first argument of format(). This passes too much information to the
format() method. Because the message string can be controlled by the user, it results in a vulnerability.

First, we can try to pass a simple string such as {} to this method. For this, we build a simple TOML payload which
contains a wishlist with an invalid (non-integer) price in order to trigger an error: wishlist = { price =
'test {}' } and we get:

<p>invalid literal for int() with base 10: 'test <Factory object at
0x7f3ec5a2c770>'</p>

From this, we know that we will be able to access various objects in the Python stack, up to the environment
variables that contain the flag. The easiest way I found to forge a payload is to run the Python code locally and use
PDB to have auto-completion. After a few attempts, we discover that the following payload prints the
environment variables and we get the flag:

wishlist = { price='''test {.__init__.__globals__[os].__dict__}''' }

	Description
	Exploitation – PoC
	Risk
	Explanation and remediation

